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A method for partitioning topologically chiral knots into mutually heterochiral classes has 
been developed, based on the principle that for such knots there exist no diagrams whose ver- 
tex-bicolored graphs are composed of equivalent black and white subgraphs. The method, 
which introduces the concept of writhe profiles, is successfully applied to alternating as well as 
non-alternating prime and composite knots, and works in cases where the Jones and Kauffman 
polynomials fail to recognize the knot's chirality. It is shown that writhe prof'fles are sensitive 
indicators of diagram similarity. 

1. In t roduc t ion  

The development of a well-founded scheme for partitioning topologically chiral 
knots into "right-handed" and "left-handed" classes has remained a challenging 
problem awaiting a satisfactory solution. The problem has been to discover a way 
of assigning any given knot to one of two homochiral, but mutually heterochiral, 
classes, so that any two knots in each class are "homochirally similar" [1,2], in the 
manner of "two equal and similar right hands" [1]. The homochirality concept [2] 
is strictly applicable because topologically chiral enantiomorphs cannot be inter- 
converted by continuous deformation. 

The challenge was faced for the first time in 1963, by Tauber [3]. Tauber's 
scheme was based on the conjecture, subsequently proven to be true [4,5], that the 
reduced diagrams of all topologically achiral (amphicheiral) alternating knots have 
an equal number of over- and undercrossings. If each of the crossing points in a 
knot K is assigned a characteristic e with a value of + 1, or - 1, according to the con- 
vention in fig. 1, then the writhe w(K) of such a knot, which is defined as the arith- 
metic sum P,e, must always be zero. It follows immediately that if the writhe is not 
zero, then the alternating knot is topologically chiral. Furthermore, because over- 
and undercrossings are switched upon reflection in the plane of projection, it also 
follows that the writhe of a chiral knot and that of its enantiomorph are oppositely 
signed. Tauber used the convention in fig. 1 (though with the signs switched) to cal- 
culate Zle values for several topologically chiral and achiral knots, and proposed 
that the absolute configuration of a knot be designated R if ~e > 0 and S if ~e < 0, 
using the descriptors of the Cahn-Ingold-Prelog convention [6]. In support of his 
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(+) (-) 

Fig. 1. Convention used to assign characteristics (~ = +1 or - 1) to crossings in knot diagrams. 

proposal ,  Tauber  po in ted  out  tha t  " F o r  certain knots  Ee = 0. This is exactly as it 
should  be, for precisely these knots  are identical with their  mi r ror  images".  

Tauber ' s  scheme seems to have been generally accepted; for example,  see [7]. 
In  1985, Walba  [8] repor ted  a convent ion  for the specification of  chirality in knots  
tha t  was in all essential respects the same as Tauber ' s ,  except tha t  e = 6 or ~, 
ins tead of  + 1 and - 1, and  tha t  the chirali ty descriptors were A and A, instead of  R 
and  S. "The  n u m b e r  o f  6s and As are then s u m m e d  ari thmetically.  I f  there are the 
same n u m b e r  of  6 and  ~ crossings, then the kno t  m u s t  be topological ly achiral. I f  
there are more  )~ crossings, the kno t  has conf igura t ion  A. I f  there are more  6 cross- 
ings, the kno t  is A." 

There  is, however ,  a fatal flaw in these schemes: a writhe of  zero is a necessary 
but not a sufficient condition for the amphicheirality o f  alternating knots. As F lapan  
[5] has po in ted  out,  the a l ternat ing composi te  kno t  51:/¢:5~, with  w(51) = - 5  and  
w(5~) = +5,  has writhe 0 even though  it is topological ly  chiral. Actually,  there are 
plenty of  a l ternat ing prime knots  with wri the 0 tha t  are topological ly chiral: the 
simplest  o f  these is 84. Nine teen  of  the 32 10-crossing pr ime knots  with wri the 0 are 
chiral, and  13 of  these are a l ternat ing [9]. Two  hund red  sixty-two of  the 320 12- 
crossing pr ime knots  with writhe 0 are chiral, and  159 of  these are a l ternat ing [10]. 
Fu r the rmore ,  a wri the of  zero may  not  even be a necessary condi t ion  for non-al ter-  
na t ing  amphichei ra l  knots:  for example,  the p roduc t  kno t  PI#P~ composed  of  a 
Perko  pair  with  w(P1) = +10  and  w(P~) = - 8  (fig. 2) has writhe + 2  even t h o u g h  it 
is topological ly  achiral. This kno t  can be i so toped to its mi r ro r  image, P~#P2, 
with wri the - 2 ,  or to compos i te  knots  P I # P ~  and  P2#P~, both  with wri the 0. 

Fig. 2. Left and center: reduced diagrams of the "Perko pair", with writhes +10 (P1, center) and +8 
(/'2, left). Pl and P2 are isotopic (homeotopic) presentations of the same topologically chiral and non- 
alternating 10-crossing knot. Right: the composite amphicheiral knot PI #P~ (P~2 is obtained from 

P2 by reflection in the plane of projection). 
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In the present paper we propose a scheme for partitioning topologically chiral 
knots into heterochiral classes that is applicable to alternating as well as to non- 
alternating prime and composite knots, including those withwrithe O. 

2. A hierarchical order of writhes 

A knot is amphicheiral if and only if the vertex-bicolored graph [11] of at least 
one of its reduced diagrams is composed of equivalent black and white subgraphs, 
inclusive of connectivities [12]; we refer to this as the standard diagram. Note that, 
according to this criterion, the diagrams of PI#P~ or P2#P~, but not of P1 #P~ or 
P~#P2, qualify as "standard". Fig. 3 illustrates this principle for a few selected 
prime knots. This equivalence is also expressed in the twofold antisymmetry of the 
corresponding adjacency matrix and in the condition that the derived polynomial 
satisfies e(t)  = e ( t  -1) [12]. 

In contrast, the corresponding subgraphs in topologically chiral knots are not 
equivalent even when the writhe of the knot is zero. That is, for any given black 
(white) vertex in the vertex-bicolored graph of such a knot, there exists no equiva- 
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Fig. 3. A sampling of amphicheiral prime knots, with equivalent black and white subgraphs of the 
vertex-bicolored graphs separated by dashed lines. The filled (black) and open (white) circles repre- 
sent the crossing point characteristics e = +1 and -1, respectively. The twofold antisymmetry of 

12427 is "concealed" [12]. 
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lent white (black) vertex. Accordingly, the environment of each black (white) ver- 
tex in such a graph has no counterpart among the white (black) vertices. This con- 
cept, which is at the heart of our scheme, is akin to the idea of atomic topicity 
introduced earlier in a chemical context [13]. In what follows, all references to 
crossing points and arcs of the knot apply with equal force to the vertices and edges 
of the corresponding knot graph. 

2.1. TWO APPROACHES TO GAUGING CROSSING POINT OR VERTEX 
ENVIRONMENTS 

Frank [14] has described two types of adjacency matrices for graphs: those 
whose elements a/j give the number of edges that connect vertices i and j  ("arc fre- 
quency matrix") and those whose elements are equal to 1 or 0 according to whether 
or not vertices i and j  are connected by at least one edge ("arc indicator matrix"). 
For purposes of the present discussion we adopt Frank's terminology and refer to a 
given graph as a frequency graph if all multiple edges are included, and as an indica- 
tor graph if all multiple edges are replaced by single edges. 

On the basis of this distinction, we have investigated two methods for gauging 
the environments of crossing points in reduced knot diagrams (or of vertices in the 
corresponding graphs). Both yield hierarchical ordering of writhes, but, as will be 
shown, in other respects the two methods give dramatically different results. 

2.1.1. Frequency graphs 
Conventional knot graphs, being regular of degree 4 [15], are frequency graphs. 

The following illustrates our method for a graph of this type. Consider a topologi- 
cally chiral knot with a nonzero writhe, for example 76 (writhe - 3), and its ith cross- 
ing point, for example the one that corresponds to vertex 1 in the knot graph 
(fig. 4). Let us imagine a set of concentric spherical shells Sp,p = 0, 1,2, . . . ,  with 
vertex 1 at the center (p = 0) and the three adjacent vertices, i.e. the nearest neigh- 
bors of vertex 1, placed on the nearest shell, S1 (fig. 4) and connected to vertex 1 
by single or double edges. 

We define the pth-order characteristic e;O~ ) of the ith vertex as the sum of the zer- 
oth-order characteristics of all the verticesjp on Sp by eq. (1), where p is the length 
of the path from i tojp and m is the number of double edges along that path. 

Ei(p) = ~ 2 mEjp(0), p = 0, 1,2, 3, . . . .  (1) 
Jp 

According to eq. (1), q(0) = -1 ,  i.e., the zeroth-order characteristic as convention- 
ally defined. The characteristic of the first-order local environment of vertex 1 is 
given by el0 ) = e2(0) + e6(0) + 2e7(0) = -2 ;  e7(0) is counted twice because there is one 
double edge joining vertices 1 and 7 (m = 1). In turn, the local environments of 
the three nearest neighbors are given by the characteristics of their adjacent ver- 
tices, which are placed on the next shell, S2 (fig. 4); note that duplication of the 
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Fig. 4. Top left: reduced diagram of 76 [9]. Top right: the corresponding vertex-bicolored graph with 
numbered vertices. Bottom: a concentric-shell diagram showing three pth order environments 

(bold-faced numerals) of vertex 1 at the center (p = 0). 

" inner"  vertex 1 is necessary for a full accounting. The characteristic of  the sec- 
ond-order  local environment of vertex 1 is thus given by el(a) = 6el(0) + Ca(0) + 2e3(0) 
+2E4(o) -1- es(0) -b 3e6(0) + ET(0) = -10.  Proceeding further (see fig. 4), the character- 
istic of  the third-order local environment of  vertex 1 is given by e1(3) = 6e1(0) 
+13ea(0) + 5e3(0) + 5e4(0) + 9e5(0) + 9e6(0) + 17e7(0) = -28 .  The characteristics of  
the pth-order  local environments of the other six vertices are similarly derived. In 
general, 

N 

eio,) : Erk,io,)£k(O), p = O, 1,2 ,3 , . . .  , (2) 
k = l  

where rk,io,) is the contribution (or coefficient) of vertex k to eio,). 
We define the pth-order writhe wp of a knot  as the sum of the eio,)'s of all N 

crossing points in the knot: 

N 

wp = ~ eio,), p = 0, 1,2,3, . . . .  (3) 
i=1 

Table 1 lists the egO, )'s of all seven crossing points in knot  76, as well as the corre- 
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Table 1 
pth-Order characteristics and writhes for knot 76 as determined by the frequency-graph method. 

p el(p) e2tr) e30,) e4(p) e50,) c60,) e7(p) wp 

0 - 1  +1 +1 - 1  - 1  - 1  - 1  - 3  
1 - 2  0 0 - 2  - 2  - 2  - 4  - 1 2  
2 - 10 - 4  - 4  - 8  - 6  - 8  - 8  - 4 8  
3 - 2 8  - 2 6  - 2 2  - 2 4  - 2 8  - 2 8  - 3 6  - 192 
4 -126  -100  -104  -114 - 9 8  -118 -108 -768  
5 -434  -452  -412 -408 -450  -432  -484 -3072  

Table 2 
pth-Order  writhes of  kaaots with wo ~ 0 as determined by the frequency-graph method. 

wo wl w2 w3 w4 w5 Examples a) 

1 4 16 64 256 1024 77, 9~, 942 
2 8 32 128 512 2048 6 I, 87, 1022 
3 12 48 192 768 3072 31,7;, 914 
4 16 64 256 1024 4048 8 I, 1012, 10130 
5 20 80 320 1280 5120 5 I, 5 I, 911 
6 24 96 384 1536 6144 10 I, 1056, 10150 

N 4N 16N 64N 256N 1024N 

a) Diagrams are taken from Rolfsen [9], with an asterisk denoting the enantiomorph of the drawing 
in [9]. For  this set, all listed values are positive. 

Table 3 
pth-Order  characteristics and writhes for knot 76 as determined by the indicator-graph method. 

p el(p) E2(p) E3(p) ~4(p) ~5(p) E6(p) ~7(p) Wp 

0 - 1  +1 +1 - 1  - 1  - 1  - 1  - 3  
1 - 1  - 1  - 1  - 1  - 1  - 2  - 3  - 1 0  
2 - 6  - 4  - 3  - 5  - 4  - 6  - 4  - 3 2  
3 - 1 4  - 1 5  - 1 3  -11  - 1 4  - 1 8  - 1 7  -102  
4 - 5 0  - 4 5  - 4 0  - 4 4  - 4 2  - 6 0  - 4 3  -324  
5 -148  -150  -131 -125 -144  -180  -154  -1032  
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sponding Wp'S up to w5. The conventional (i.e. zeroth order) writhe (w0) is -3 ,  and 
as p increases so does the absolute magnitude of wp, while the sign remains the 
same. Note that forp/>Pmin = 2,  all seven ci(p)'s bear the same sign. In general, for 
every knot there exists apmin such that all C~(p) components Of Wp bear the same sign 
for p ~Pmin. Obviously, Pmin = 0 if and only if all ei(0)'s have the same sign (the tre- 
foil knot is the simplest example). 

The Wp'S of 76 are shared by all knots with w0 = -3 .  A different set of Wp'S is 
shared by all knots with, say, w0 = 2. In general, Wp/Wo = 40 (table 2). This relation 
is a special case of the theorem in eq. (4). 

T H E O R E M  

If a graph is regular of degree q, then its pth-order writhe wp satisfies 

wp = woq p, p = 0 , 1 , 2 , 3 ,  . . . .  (4) 

Proof 
Substituting eiO,) in eq. (3) by eq. (2), it is easy to see that 

N 

Wp = ~-~gk(p)ek(O), p = 0 , 1 , 2 , 3 , . . . ,  (5) 
k=l  

where 

N 
gk(p) = ~rk,i(p), p = 0 , 1 , 2 , 3 , . . . ,  

i=1 

is equal to the number of paths of length p (or spanned p single edges) that are con- 
nected to vertex k. 

Consider a regular graph of degree q. Any edge with multiplicity h > 1 can 
always be decomposed into h single edges so that every vertex in such a graph is the 
common terminal (or root) vertex of q q-regular trees [14]. At the pth stage (corre- 
sponding to Sp) of q q-regular trees with a common terminal vertex k, gk(p) = qP. 
Substitution ofgk(p) in eq. (5) by q P, in combination with eq. (3), yields eq. (4). [] 

2.1.2. Indicator graphs 
Let us again apply the procedure described above for knot 76, but with one cru- 

cial difference: we now ignore the distinction between single and double edges. 
That is, the knot will be represented by an indicator rather than by a frequency 
graph. To borrow a concept from chemistry, we treat each vertex as a coordination 
center whose coordination number (6) is given by the number of nearest 
"bonded" neighbors. In this view, six of the seven vertices in the knot graph of 76 
have 6 -- 3, and only vertex 6 has ~ = 4. 

Eq. (1) is still valid, with the restriction that m = 0 throughout. That is, all dou- 
ble edges in the knot graph are, in effect, replaced by single edges. Accordingly, 
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el(0) = --1, el(l) = el(0) + E6(0) + E7(0) = --1, ¢~1(2) = 3el(0) 4- e2(0) -'}- e3(0) 4- e4(0)4-eS(0) 
4-2e6(0) 4- eT(0) ----- --6, and El(3) = 4el(0) 4- 6e2(0) -k- 3e3(0) 4- 3e4(0) 4- 4e5(0) 4- 6e6(0) 
4-6e7(0) = -- 14. The characteristics o f thep th-order  local environments of  the other 
six vertices are similarly derived. Table 3 lists the e;(p)'S of all seven crossing points 
in knot  76 as determined by this method, as well as the corresponding wp's up to 
ws. As was found in the frequency-graph approach (table 1), the absolute magni- 
tude Of Wp increases with an increase inp while the sign remains the same. The rates 
of  increase, however, are very different, and nOWpmin = 1. 

That the two methods yield different results is to be expected, since identical 
results can be obtained only if the knot graph has no double edges. Of the 249 prime 
knots with up to 10 crossings depicted in [9] (the "classical" knots), only four 
have this property, and two of these (818 and 10113) are amphicheiral (fig. 5). The 

818 10123 

940 10141 

947(a) 947 (b) 

82o 10124 

Fig. 5. Reduced diagrams and vertex-bicolored graphs of some classical prime knots with no double 
arcs. The top four diagrams are from [9] and the bottom two from [17]. Two diagrams are shown for 

947: (a) with one double arc (from [9]) and (b) without double arcs (enantiomorph of [16]). 
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Table 4 
pth-Order characteristics and writhes for knot 31 as determined by the indicator-graph method. 

43 

P ~lO,) E2(p) e3(p) wp 

0 -1  -1  -1  - 3  
1 - 2  - 2  - 2  - 6  
2 - 4  - 4  - 4  - 12  
3 - 8  - 8  - 8  - 24  
4 -16  -16  - 1 6  -48  
5 - 3 2  -32  - 3 2  -96  

two topologically chiral knots in [9] with no double arcs a re  940 and 10141 (fig. 5), 
and the two methods give the same set ofpth-order writhes for each knot (table 2: 
w0 = 3 for 9~0 and w0 = 2 for 10~41). Diagrams with this property are, however, by 
no means restricted to the four listed above, as exemplified by 947 (fig. 5(b) [16]). 
Additional examples are found in the work of Tait [17] (fig. 5:820 (whose enantio- 
morph is known as the "bowline knot" [18]) and 10124). 

There are two decisive reasons why the indicator-graph approach is the only 

8 

i ¢ ",,2 

I i 

Fig. 6. Top left: reduced diagram of 84 [9]. Top right: the corresponding vertex-bicolored graph with 
numbered vertices. Bottom: a concentric-shell diagram showing three pth order environments 

(bold-faced numerals) of  vertex 1 at the center (p = 0). 
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Table 5 
pth-Order  characteristics and writhes for knot 84 as determined by the indicator-graph method. 

p el(p) e2(p) e3(p) ~4(p) Es(p) ~6(p) £7(p) ES(p) Wp 

0 +1 +1 +1 +1 - 1  - 1  -1  - 1  0 
1 - 1  +2  +2 - 1  - 1  - 2  - 1  0 - 2  
2 +1 +1 +1 +1 - 3  - 2  - 3  - 4  - 8  
3 - 6  +2 +2 - 6  - 5  - 6  - 5  - 4  - 2 8  
4 - 7  - 4  - 4  - 7  - 1 6  - 1 0  - 1 6  - 2 2  - 8 6  
5 - 4 2  - 11 - 11 - 4 2  - 3 9  - 3 2  - 3 9  - 4 6  -262  

one that  suits our purposes. First, this method allows differentiation among knots 
with the same w0, as shown, for example, by a comparison of the results for 76 (table 
3) and for the trefoil knot  (table 4). This information is lost in the frequency-graph 
approach, which yields the same result for all knots with the same w0 (table 2), 
even though it could hardly be argued that the combined local environments of  
knots such as 76 and 31 are the same. 

The second reason is that the frequency-graph approach allows a hierarchical 
ordering of writhes only if w0 ¢ 0 because, according to eq. (4), wp = 0 for allp's if 
w0 = 0. This crippling limitation can be circumvented by resorting to indicator 
graphs. For example, if we apply the procedure described for 76 in this section to 
the topologically chiral knot  84 with w0 = 0 (see fig. 6), we find that el(0) = +1, 
El(l) = E2(0)'t- 67(0)-t- 68(0) = -1, El(2) = 3EI(0)q--E3(0)q-E4(0)--I-£5(0)n t- £6(0) -+" E7(0) "+" E8(0) 

= +1, and e1(3) = 2cl(0)+4e2(0)+e3(0)+3e4(0) + 3e5(0) + 2e6(0) + 5c7(0) + 6e8(0) = -6 .  
Table 5 lists all the eiCo)'s, as well as the corresponding Wp'S up to w5; Pmin ---- 4. The 
equivalences elCo) = e4(p), e2Co) = e3(p), and esCo) = eT(p) arise from the fact that 84 can 
be projected as a diagram with C2 symmetry in which crossing points 6 and 8 lie 
on the C2 axis. 

Thus, by use of  this method,  the nonequivalence of  the black and white sub- 

Table 6 
Writhe profiles for representative knots with w0's ranging from 0 to 10. 

Wo wl w2 w3 w4 w5 Example [9] 

0 +2 +10 +40 +144 +498 1019 
+1 +4 +10 +32 +98 +316 922 
+2 +4 +8 +18 +48 +140 87 
+3 +4 +8 +18 +50 +150 914 
+4 + 10 +26 +74 +206 +582 85 
+5 +14 +40 +118 +354 +1072 911 
+6 +16 +44 +126 +356 +1020 105o 
+7 +20 +60 + 180 +540 + 1620 74 
+8 +28 +100 +358 +1284 +4606 819 
+9 +24 +68 + 196 +570 + 1664 95 

+10 +34 +118 +410 +1428 +4972 101ol 
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graphs of a topologically chiral knot's vertex-bicolored graph is revealed even if 
the knot's writhe is zero. In what follows, all ei(p)'s and Wp'S are derived by this 
method. 

For every knot, the indicator-graph method yields a series of ordered writhes, 
wo, Wl , . . . ,  Wp, which we call the writhe profile of the knot. If and only if the knot is 
amphicheiral, all Wp'S are zero and the profile is a flat line. With the single excep- 
tion of knot 77, which will be discussed below, the Wp'S of all 229 non-amphicheiral 
classical prime knots increase monotonically in absolute value but without a 
change in sign, beginning with the smallest nonzero writhe, w,, for all values of 
p/> s. A representative sample is displayed in table 6. Thus the writhe profile of such 
a knot is a signed quantity. Obviously, s = 0 if and only if w0 ¢ 0; if w0 = 0, then 
s > 0, as in the example of 84 (s = 1). Nor is the approach restricted to prime knots; 
for example, the composite knot 51 #5~ mentioned in the Introduction has Wp = O, 
2, 10, 36, 116, 352 forp = 0 through 5, with s = 1 andpmin = 7, and the granny knot 
31#31 has wp -- - 6 , - 1 6 , - 4 4 , - 1 2 0 , - 3 2 8 ,  and -896 for p = 0 through 5, with 
s = 0 andpmin = 0. 

2.1.3. The 77syndrome 
The monotonic increase in wp's described above was observed in all cases but 

that of knot 77. From the reduced diagram in fig. 7(a), wp = 1,0, 0 , - 2 , - 6 , - 2 4 ,  
and -80  forp -- 0 through 6 (Pmin = 6), while for the diagram in fig. 7(b), wp = 1, 0, 
4, 8, 38, 112, 436, 1408, and 5180 forp = 0 through 8 (Pmin = 8). The root cause of 
this aberrant behavior is evidently related to the fact that of all the 209 classical 
prime knots with nonzero writhe (w0 ~ 0), 77 is unique in having ~28 = 0, where 8 is 
now the signed coordination number. That is, with reference to fig. 7, 8+ = 3 and 
8_ = -4 ,  hence 4c5+ + 38_ = 0. 

If the purpose is to assign a knot's configuration (section 3), it is vital to avoid 
this condition, provided that there is a choice among diagrams from which to 
derive a writhe profile. An instructive example is provided by knot 942 (fig. 8). The 
three diagrams (a)-(c), constructed from tangles in [19], give different results for 
the respective wp's (table 7), but what is notable is that only (c) exhibits the 77 syn- 

(a) (b) 

Fig. 7. (a) Reduced diagram of 77 [9] and the corresponding vertex-bicolored graph. (b) An isotopic 
diagram of 7v and the corresponding graph. 
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(b) 

(a) (c) 

Fig. 8. Top left: reduced diagram of 942 [9]. (a)-(c) Three isotopic diagrams of 942 and the correspond- 
ing ver tex-bicolored graphs. Graph (a) also represents the diagram at the top left. 

drome. The signed HS's are consistent with this behavior: H6 = +2, +4, and 0 for 
(a), (b) and (c), respectively. The choice of diagrams suitable for a left-right classifi- 
cation is therefore limited to (a) or to (b). 

2.2. SYMMETRIC AND ANTISYMMETRIC CROSSING POINT ENVIRONMENTS 

Given the standard diagram of an amphicheiral knot, the black and white ver- 
tices of the corresponding vertex-bicolored graph are either pairwise symmetric, 
that is, related by twofold rotation, or pairwise antisymmetric, that is, related by 
twofold antirotation (i.e. twofold rotation combined with a transposition of colors 
[12]). The positive and negative component ei(p)'s of all Wp'S in the knot's standard 
diagram cancel exactly, so the Wp'S are zero for all values ofp. 

In this section we show that symmetry and antisymmetry are revealed by an ana- 
lysis of the characteristics of the local environments. Tables 8-13 list some pth- 
order characteristics for the six knots in fig. 3 (the numbers attached to the vertices 
in that figure correspond to the i's of the ei(~) values listed in the tables). We begin 
by examining table 13 (knot 12427). Although the matched pairs cannot all be iden- 

Table 7 
Writhe profiles for knot 942. 

graph a) wo Wl w2 w3 w4 w5 w6 w7 Pmin 

a +1 +2 +4 +12 +32 +98 +278 +838 7 
b +1 +4 +12 +38 +120 +374 +1184 +3702 3 
c + 1 0 0 - 2  - 6  -24  -72  -250 13 

a) See fig. 8. 
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Table 8 
pth-Order characteristics for knot 41. 

47 

p e~(p) ~20,) e30,) e4(p) 

0 +1 +1 - 1  - 1  
1 - 1  - 1  +1 +1 
2 +1 +1 - 1  - 1  
3 - 1  -1  +1 +1 

Table 9 
pth-Order characteristics for knot 63. 

p el (p) £2(p) t~3(p) e4(p) es(p) E6(p) 

0 +1 +1 +1 - 1  - 1  - 1  
1 +1 +1 0 0 - 1  - 1  
2 0 +1 +1 - 1  - 1  0 
3 +2 0 - 1  +1 0 - 2  
4 - 3  +2 +3 - 3  - 2  +3 
5 +8 - 3  - 6  +6 +3 - 8  

Table 10 
pth-Order characteristics for knot 83. 

p el (p) e2(p) c3(p) e4(p) eS(p) e6(p) eT(p) eg(p) 

0 +1 +1 +1 +1 - 1  -1  -1  - 1  
1 - 1  +2 +2 - 1  +1 - 2  - 2  +1 
2 +4 +1 +1 +4 - 4  - 1  - 1  - 4  
3 - 7  +5 +5 - 7  +7 - 5  - 5  +7 

Table 11 
pth-Order characteristics for knot 817. 

p el(p) e2(p) e3(p) e4(~) es0,) e60,) eT(p) egO, ) 

0 +1 +1 +1 +1 -1  - 1  - 1  - 1  
1 +1 0 0 +1 - 1  -1  0 0 
2 +1 +1 0 0 0 - 1  - 1  0 
3 +1 0 - 1  +1 -1  -1  0 +1 
4 +2 +1 0 - 1  +1 - 2  - 1  0 
5 0 +1 - 3  +3 - 3  0 - 1  +3 
6 +7 - 1  +3 - 6  +6 - 7  +1 - 3  

Table 12 
pth-Order characteristics for knot 1079. 

p el(p) e20~) e30~) e40~) es(p) e60,) eT0,) e8(~) eg(r) elO0~) 

0 +1 +1 41 +1 +1 --1 --1 --1 --1 --1 
1 41  +1 +1 +2 +1 --1 --1 --1 --2 --1 
2 +1 +1 +2 +2 +2 - 1  - 1  - 2  - 2  - 2  
3 +2 +1 +1 +4 +2 - 1  - 2  - 2  - 4  - 1  
4 +1 +1 +4 +3 +5 - 1  - 1  - 5  - 3  - 4  
5 +5 0 0 +9 +3 0 - 5  - 3  - 9  0 
6 - 2  +2 +9 +3 +14 - 2  +2 - 1 4  - 3  - 9  
7 +18 - 7  - 4  +23 -1  +7 -18  +1 -23  +4 
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Table 13 
pth-Order characteristics for knot 12427. 

0 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1  
1 - 1  +1 - 2  - 4  - 1  - 1  +1 +1 +4  +2  - 1  +1 
2 +4 +1 +7 +3 +4 +5 -5  - 4  -3  -7  -1 - 4  
3 -10 +8 -11 -17 - 2  - 6  +6 +2 +17 +11 -8  +10 

tiffed f rom the ei(p)'S given f o r p  = 0, 1, or 2 in the table, the ei(p)'S f o r p  = 3 clearly 
display the an t i symmet ry  (N) of  all 6 pairs: 1 ~ 12; 2 ~ 11; 3 ~ 10; 4 ~ 9; 5 ~ 8; 
6 ~ 7. A different s i tuat ion is encountered  in tables 9, 11, and  12: here, all ant isym- 
metr ic  pairs can be unambiguous ly  identified before all the differences a m o n g  
them become explicit. Consider  table 9 (knot  63). The  an t i symmet ry  of  all 3 pairs 
(1 ~ 6;2 ~ 5; 3 N 4) becomes evident  only at p = 3 but  can be unambiguous ly  
derived f rom the values in the first 3 rows (p = 0, 1,2). In table 11 (knot  817), the 
an t i symmet ry  of  all 4 pairs (1 ~ 6; 2 ~ 7; 3 ~ 8; 4 ~ 5) is evident  only at p = 6 but  
can also be derived f rom the first 3 rows. A n d  in table 12 (knot  1079), the ant isym- 
met ry  of  all 5 pairs (1 ~ 7; 2 ~ 6; 3 ~ 10;4 ~ 9; 5 ~ 8) is evident  only a t p  = 7 bu t  
can be derived f rom the first 4 rows. 

Tables 8 and 10 present  yet another  set of  relationships: now symmetr ical ly  
paired vertices are ant i symmetr ic  relative to other  such pairs. In table 8 (knot  41) 
this is a l ready obvious a t p  -- 0, which shows tha t  vertices 1 and 2 are symmetr ic  (,), 
as are vertices 3 and 4, so tha t  1,2 ~ 3, 4. Similarly, in table 10 (knot  83) it is clear 
a t p  = 1 that  1,4 ~ 5, 8 and 2, 3 ~ 6, 7. 

Finally,  we note  that  this type of  analysis fails if each vertex in the vertex-bico- 
lored graph  is su r rounded  by an equal n u m b e r  o f  white and  black vertices, as is the 
case for knots  818 and  10123 (fig. 5). In such a case, no t  only are all the wp's zero, in 
c o m m o n  with all o ther  amphicheira l  knots,  but  so are all the eiCo )'s. Accordingly,  
no  in fo rma t ion  can be extracted concerning symmetr ic  or an t i symmetr ic  relat ion- 
ships. 

3. Classes  o f h o m o c h i r a l  knots  

The  procedure  to de termine  the desired classification consist  of  two steps. First  
the vertex-bicolored graph  of  the knot ' s  reduced d iagram is obta ined ( s tandard  
graphs  for amphicheira l  knots).  Second, the knot ' s  wri the profile is de te rmined  by 
use of  the indica tor -graph method .  I f  all wp's are zero, the kno t  is amphicheiral .  
Otherwise,  the sign of  the smallest  nonzero  writhe, ws, suffices for the ass ignment  
o f  the kno t  to the appropr ia te  class, according to the following definition: 

DEFINITION 
A kno t  is r igh t -handed  (denoted  D) if Ws > 0, i.e. if the writhe profile is positive, 

and  lef t -handed (denoted  by L) ifws < 0, i.e. if the wri the profile is negative. 
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For  the great major i ty  of  topologically chiral knots, ws = wo. In such cases our 
scheme matches the schemes discussed in the Introduct ion,  with D / L  replacing 
R / S  [3] and A/A [8]. Our definition also accords with the usual (if arbitrary) sign 
convention (fig. 1) that  results, for example, in the common at t r ibut ion of  "r ight-  
handedness"  and "lef t-handedness" to trefoil knots with w0 = +3 and - 3 ,  respec- 
tively. For  topologically chiral knots with w0 = 0 (i.e. with s > 0), where previous 
schemes have failed our scheme now provides a ready answer: for such knots, the 
sense of  chirality, hidden in the zeroth-order writhe, is revealed in the high-order 
writhes. This is illustrated in table 14 for all 20 classical chiral prime knots with 
writhe 0, and in table 15 for 32 of  the 262 12-crossing chiral prime knots with writhe 
0. The knots in table 15 were selected in order to demonstra te  the applicability of  
our classification scheme even in cases where the Jones and K a u f f m a n  polynomials  

[20] fail to recognize the chirality of  the knot. The diagrams of  the 12-crossing 
knots  in fig. 9 were developed from notat ion provided by Thistlethwaite [10,21]. 

Diagram po lymorph i sm presents no problem: al though writhe profiles are dia- 
gram-dependent,  their signs are invariant for a given enan t iomorph  and are there- 
fore suitable for the assignment of  knots to their proper homochira l i ty  classes. 

For  example, diagrams (a) and (b) for knot  942 are different (fig. 8) and so are the 

Table 14 
Left-right classification of the 8- and 10-crossing chiral prime knots with w0 = 0. 

Knot a) w0 Wl w2 wa w4 w5 Pmin D / L Polynomial b) 

84 0 -2 -8 -28 -86 -262 4 L 
1015 0 0 -2 -8 -30 -96 8 L 
1019 0 +2 +10 +40 +144 +498 5 D 
1031 0 +2 +8 +32 +110 +376 6 D 
1042 0 +2 +6 +18 +56 +182 6 D 
1048 0 0 +2 +10 +36 +118 7 D 
1052 0 -2 -8 -28 -92 -296 5 L 
1054 0 0 0 0 -2 -8 15 L 
1071 0 0 0 0 +2 +4 14 D 
1091 0 0 +2 +10 +36 +126 6 D 
1093 0 0 --2 --8 --28 --96 6 L 
10104 0 0 +2 +10 +38 +138 5 D 
10107 0 +2 +10 +40 +150 +542 4 D 
10108 0 0 +2 +6 +16 +42 10 D 
10125 0 -2 -10 -34 -104 -302 5 L 
10129 0 -4 -18 -66 -232 -792 4 L 
10135 0 0 -2 -10 -42 -158 8 L 
10146 0 -2 -6 -20 -60 -184 6 L 
10153 0 +2 +10 +36 +122 +388 4 D 
10165 0 -2 -10 -42 -166 -646 6 L 

V 

V,K 
V 

V 

V 

a) All knot diagrams are from [9]. 
b) "V" or "V, K" means that the Jones polynomial V or that both the Jones and the Kauffman polyno- 

mials K fail to detect the chirality of the corresponding knot. V and K polynomials were provided 
by Thistlethwaite [10]. 
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Table 15 
Left-right classification of  selected 12-crossing chiral prime knots with w0 = 0. 

Knot a) w0 wl w2 w3 w4 w5 Pmin D / L  Polynomial b) 

122 0 +2 +4 +16 +46 +154 6 D 
1299 0 +2 +10 +40 +148 +540 6 D 
12126 0 +2 +2 +22 +60 +292 9 D V, K 
12132 0 +2 +4 +24 +74 +308 7 D V, K 
12214 0 +4 +16 +60 +228 +846 4 D V, K 
12222 0 0 +2 8 +36 +132 8 D V, K 
12453 0 +2 +4 +20 +54 +210 12 D V 
12674 0 +2 +4 +20 +58 +240 11 D V 
12697 0 +4 +18 +74 +294 +1124 5 D V, K 
12778 0 +2 +10 +42 +160 +592 5 D 
12943 0 --4 -- 18 --74 --274 --994 5 L V 
121007 0 +2 +10 +38 +138 +484 6 D 
121011 0 0 +2 +12 +46 +162 7 D V 
121081 0 0 +2 +8 +30 +100 9 D V 
121o88 0 0 0 +2 +8 +36 9 D V 
121199 0 0 - 2  - 10  -38  -136 7 L V 
121222 0 0 +2 +10 +40 +152 5 D V 
121231 0 0 +2 +10 +38 +136 7 D V 
121235 0 0 - 2  - 1 2  -48  -176 7 L V 
121245 0 +2 +8 +28 +96 +320 6 D 
121250 0 0 0 - 2  - 10  -48  10 L V 
121258 0 0 0 0 0 --2 16 L V 
121283 0 0 +2 +12 +46 +154 8 D V 
121313 0 0 - 6  - 22  -86  -278 6 L 
121553 0 +4 +16 +64 +224 +796 4 D 
121746 0 0 0 0 - 8  - 4 2  11 L 
121794 0 +2 +6 +20 +68 +236 6 D V 
121848 0 +2 +10 +40 +154 +572 6 D 
12185o 0 +2 +12 +46 +186 +672 7 D V 
121859 0 +4 +22 +86 +314 +1074 6 D V 
122109 0 +4 +16 +58 +188 +610 4 D V 
122173 0 +2 +8 +30 +110 +400 7 D 

a) Reduced diagrams of the knots are depicted in fig. 9. 
b) See table 14, footnote (b). 
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Table 16 
Parameters of  linear plots for 13 sets of similar diagrams a) 

Knotb) WO c) wts d) w19 x 10 -l°e) ~f) logfg)  

85 h) 4 3.46 0.11 0.448 0.439 
819 h) 8 7.85 0.27 0.449 0.439 
8~ ° i) 2 2.19 0.08 0.450 0.439 

819 8 7.81 26.99 0.555 0.544 
8~o 2 2.16 7.67 0.555 0.544 
8~i 4 3.47 11.65 0.5 54 0.544 

922 j) 1 0.86 0.38 0.505 0.493 
9~5 5 3.71 1.74 0.508 0.493 

9~5 5 5.23 1.56 0.499 0.493 
9~4 J) 1 1.34 0.45 0.503 0.493 
9~5 J) 5 5.06 1.46 0.498 0.493 

9~3 J) 1 1.21 6.40 0.565 0.551 
9h 1 1.16 6.19 0.565 0.551 

936 5 4.71 0.34 0.466 0.461 
943 j) 5 4.70 0.33 0.465 0.461 

939 5 5.23 7.48 0.535 0.523 
948 5 4.07 5.34 0.532 0.523 
949 9 8.76 12.27 0.534 0.523 

1046 6 4.68 0.09 0.435 0.415 
10124 k) 10 9.31 0.21 0.439 0.415 
10~26 4 3.37 0.07 0.435 0.415 

1012 01) 2.65 0.29 0.504 0.477 
10~3 o 4 4.35 1.36 0.500 0.477 
10~31 6 5.86 1.82 0.500 0.477 

10113 4 3.39 42.98 0.583 0.580 
10~32 4 3.56 47.95 0.585 0.580 
10~33 6 5.67 78.66 0.586 0.580 
10134 10 9.81 138.14 0.587 0.580 
10136 2 1.56 20.27 0.584 0.580 
10147 2 1.48 17.58 0.581 0.580 
1015o 6 5.78 81.53 0.587 0.580 

10~2 o 10 9.84 52.30 0,5 65 0.556 
10166 6 6.44 35.02 0.565 0.556 

10~37 2 1.70 3.11 0.540 0.532 
10138 2 2.64 5.41 0.5 43 0.532 

Table continued on next page 
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Knot b) wo c) n/~ d) wl9 x 10 -l°e) ~f) logfg) 

12~9 4 3.66 4.55 0.531 0.523 
121343 4 4.56 5.99 0. 533 0.523 
12~345 2 1.45 1.91 0.533 0.523 
12~346 8 7.15 8.76 0.531 0.523 
121347 8 8.07 10.21 0.53 2 0.523 
121348 2 2.38 3.35 0.535 0.523 
121349 2 2.02 2.31 0. 528 0.523 

~) Similar diagrams are defined as sharing the same knot graph. Diagrams of knots and their vertex- 
bicolored graphs are depicted in the D-configuration in figs. 10-15. The parameters listed in this 
table all correspond to linear plots with R 2 = 1.000. 

b) Notation for 12-crossing knots was supplied by Thistlethwaite [10]; all other knots were taken 
from Rolfsen [9] unless otherwise noted. An asterisk denotes the enantiomorph of the correspond- 
ing diagrams in [9,10]. 

c) Zeroth-order (conventional) writhe. 
d) Antilog of the intercept on the log wp axis (eq. (6)). While ws must be an integer, ~ is the smallest 

writhe that is compatible with a linear plot. 
e) Largest computed wp value. 
0 Eq. (6). 
g) ~ .  (7). 
u) Diagram from [18]. 
i) Diagram from [17]. 
J) Diagram isotopic to the one depicted in [9]. 
k) The diagram has 7 double edges (fig. 15). Another diagram of the same knot, with no double edges 

(fig. 5), has a very different writhe profile (see table 2). 
1) ws = +2,s = 1. 

c o r r e s p o n d i n g  wri the  profi les ( table 7), b u t  b o t h  prof i les  are  pos i t ive  a nd  the k n o t  
is t he re fo re  ass igned the D conf igura t ion .  A n o t h e r  example  is p r o v i d e d  b y  k n o t  947; 
the  wr i the  prof i les  for  the d iagrams in fig. 5(a) (wp = +3 ,  +10 ,  +34 ,  +126 ,  +474 ,  
+ 1 8 0 8  f o r p  = 0 t h rough  5) and fig. 5(b) ( table  2:w0 = 3) obv ious ly  differ,  b u t  b o t h  
are  pos i t ive  and  the kno t  therefore  be longs  to  the D class. The  s ame  is t rue  o f  the  
P e r k o  pa i r  in fig. 2: for  P 1 , w p = + 1 0 , + 3 4 , + l 1 8 , + 4 1 0 , + 1 4 3 0 , . . . ,  a n d  for  
PE, wp = +8 ,  +24 ,  +78,  +254,  +850,  . . . .  W e  have  so far  been  u n a b l e  to  d i scover  
any  ambigu i t i e s  or  cont radic t ions ,  but ,  given the empir ica l  na tu re  o f  ou r  invest iga-  
t ion,  fu r the r  w o r k  m a y  be required  to test  the l imits o f  usefulness  o f  the  m e t h o d .  

4. Writhe proffies as indicators o f  diagram similarity 

By e l iminat ing  all ze ro-va lued  Wp'S f rom the wr i the  prof i les  o f  n o n - a m p h i c h e i r a l  
knots ,  eq. (4) m a y  be restated,  in modi f i ed  form,  as 

log wp ~ ~(p - s) + log w'~. (6) 
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Fig. 10. Linear plot ofeq. (6) (s = 0) for the illustrated set of similar knot diagrams and their vertex- 
bicolored graphs. Provenance of diagrams and parameters of plots are listed in table 16. Knot 8~ 
and the version of 819 shown here are known as the "false lover's knot" and the "true lover's knot", 

respectively [18]. 

Eq. (6), which corresponds  to a straight  line with slope n and intercept log ~ ,  is 
exact for regular  graphs  of  degree q, with ~ = ws = w0 and n = log q. Thus,  kno t  
graphs  with no single edges (e.g. 31,51,71,91 [9]), those with two single edges and  
one double  edge incident  on each vertex (e.g. 1058 [9]), and  those with no double  
edges (e.g. some graphs in fig. 5), yield linear plots of  log wp vs. p with slopes 
n = log 2, log 3, and  log 4, respectively. In all other  cases a linear re lat ionship is clo- 
sely approx ima ted  (R2>~ 0.997) with wp's ranging over ca. 10 orders of  magn i tude  
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for all plots examined so far, and with w' s ~ ws. Parameters of 42 plots with 
R 2 = 1.000 are listed in table 16, and the corresponding knot diagrams and vertex- 
bicolored graphs are depicted in figs. 10-15. 

Diagrams that are similar, in the sense that they share the same knot graph, 
yield linear plots with slopes that are the same to within ca. 1% or less (table 16, figs. 
10-15). Figs. 10-14 display some of the plots and also illustrate the role played by 
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Fig. 11. Linear plot ofeq. (6) (s = 0) for the illustrated set of  similar knot diagrams and their vertex- 
bicolored graphs. Provenance of diagrams and parameters of  plots are listed in table 16. 
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Fig. 12. Linear plot ofeq. (6) (s = 0) for the illustrated set of similar knot diagrams and their vertex- 
bicolored graphs. Provenance of diagrams and parameters of plots are listed in table 16. 

diagram polymorphism. Thus, two different (though isotopic) diagrams of the 
same knot, for example 819, belong to two different sets of similar (in the sense 
defined above) diagrams (figs. 10 and 11). The same is true of 820 (figs. 10 and 11), 
945 (figs. 12 and 13), and 944 (figs. 13 and 14). A given knot may therefore give rise 
to two or more linear plots with very different slopes, depending on which 
diagram is chosen. An extreme example is 820, for which Tait has shown 5 different 
diagrams [17], including the two in figs. 10 and 11 and the "bowline knot" in 
fig. 5. 

While different diagrams with a common knot graph yield linear plots with 
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Fig. 13. Linear plot ofeq. (6) (s = 0) for the illustrated set of similar knot diagrams and their vertex- 
bicolored graphs. Provenance of diagrams and parameters of plots are listed in table 16. 

(nearly) the same slope, the converse is decidedly not the case: parallel lines do not 
necessarily imply a common knot graph. Consider, for example, the remarkable 
sameness in the absolute values of the writhe profiles (up to ws) for 121199 and 121231 
(table 15). Despite the fact that the two knots (fig. 9) do not share the same knot 
graph, linear plots of log wp, vs. (p - 2) (R 2 = 1.000 for both) have closely similar 
parameters: {n, ~ }  = (0.546, 2.88} for 121199 and {0.549, 2.80} for 121231. Interest- 
ingly, the two knots share the same black and white subgraphs (fig. 16). However, 
this is not a necessary condition for parallel plots. For example, the parameters 
{n, ~ }  = {0.447, 3.44} of the linear (R 2 = 1.000) plot for 81 make it a candidate for 
placement with the set in fig. 10, yet neither the knot graph nor its subgraphs (fig. 
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Fig. 14. Linear plot ofeq. (6) (s = 0) for the illustrated set of similar knot diagrams and their vertex- 
bicolored graphs. Provenance of diagrams and parameters of plots are listed in table 16. 

16) bear any reasonable relationship to the others in the set. 
The magnitude of ~c depends to a significant extent on f ,  the average of the ver- 

tex coordination numbers in the knot graph: 

1 N 
f = ~ ~ 6~ (7) 

Fig. 17 shows that tc increases roughly as a function of log f ,  but other factors 
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Fig. 15 (continued from previous page). 

Fig. 16. Vertex-bicolored knot graphs of 12~ 199 (left), 121231 (center), and 8~ (right). Asterisks denote 
enantiomorphs of the knots in [9,10]. 
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Fig. 17. Plot of logf  vs. ~. The three filled circles represent regular knot graphs (~ = log f ,  straight 
line segment) and the open circles represent graphs of the knots in table 16. Individual values of ~ and 

logf  are given in table 16. 

obviously also play a role. Notably, e; = log f  only for regular graphs; for all 
others; ~; > logf.  
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